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On the Remainder in Quadrature Rules 

By P. D. Tuan 

Abstract. An expression is obtained for the remainder in quadrature rules applied to 
functions whose Hilbert transforms exist. The estimation of the remainder is illustrated by 
means of a particular example. 

1. Introduction. Let w(t) be a given function, nonnegative in a real interval 
[a, b] and integrable over (a, b). Suppose that to approximate the integral 

rb 

(l.l) J ~~~~~~~~w(t)f(t) dt, 

we use a quadrature rule of order n (see, for example, [1]). That is, we replace the 
integral by a weighted sum 

(1.2) ? 
r-O 

where the numbers XA,n are called the weight factors and t4,,, the nodes of the rule, 
are n distinct points in [a, b]. The free parameters X.,,, and t,,, may be chosen in 
different manners which result in a variety of quadrature rules. In particular, we are 
interested in quadrature rules which are exact, i.e. R",f] = 0, when f(t) is a polynomial 
of degree less than n. It may be shown [1] that for such rules, 

(1.3) Xr , = 

where k,,(t) is a polynomial of degree n with zeros at t = t,,,, r - 1, 2, * , n, and 

4',,(4 ) is given by 

(1.4) 6(rn=J r dt. 
tr,,, - t 

The remainder R,,[f in a quadrature rule is defined by 
b n 

(1.5) RAt] = f w(t)f(t) dt - E Xr.Mr.n). 
v ~~~~r-O 

For the particular rules mentioned above, the remainder may be expressed as a 
contour integral (see, for example, [2]), 

(1.6) Rn[f] = -I I An(Z) f(z) dz, 

where 
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(1.7) =6,(z) fb dt. 

The interval [a, b] is contained in the interior of the contour ? on and within which the 
function f(z) is analytic. 

In the application of quadrature rules arise the questions of convergence and rate 
of convergence of the sum (1.2) to the integral (1.1). Both questions are answered if 
either the remainder can be expressed explicitly as a function of n or its asymptotic 
behaviour is known for large values of n. Starting from the contour integral form (1.6), 
asymptotic estimates for the remainder have been obtained in [2}-[5]. It is interesting 
to note that these asymptotic estimates, although derived for large n, often are sur- 
prisingly close to the actual values of the remainder for relatively small n. It is our aim 
in this paper to derive an expression, and hence obtain estimates, for the remainder in 
quadrature rules applied to a special class of functions. The functions which we shall 
consider are those f(t) for which the Hilbert transforms 

(1.8) F(x) = f f( )dt (x real) 

exist, fO denoting the Cauchy principal value of f -o:. 

2. An Expression for the Remainder. We shall give our principal result in 
Theorem 1, but first we need two lemmas. 

LEMMA 1 [6, THEOREM 101]. If a function f(t) belongs to the class L,, p > 1, in the 
basic interval (- o, co), then (1.8) defines almost everywhere afunction F(x), which also 
belongs to L,, whose Hilbert transform coincides almost everywhere with -f(t). 

LEMMA 2. Let f(t) and g(t) be functions of the classes L, and L, respectively. If 
I/p + 1/q < 1, then 

(2.1) f dt dx = + g(x) dx (t - f (to)to) 
'J~co t to xt0 J(to - t)o - t) -i2(ogt) 

Proof. This lemma follows from a result in [7, p. 171] to which the reader is re- 
ferred for details. 

We may now state and prove the theorem. 
THEOREM 1. Suppose that 

(i) w(t) is a nonnegative function in (a, b] and integrable over (a, b); w1(t) is the 
function defined by 

(2.2) wQ(t) = w(t), (a ? t ; b), 

= , (t < a, t > b). 

(ii) 45,,(t) is a polynomial of degree n with simple zeros at t = t, In, where a ? t,,,, 5 b 
orr = 1,2, *, n. 

(iii) w,(t)ckl(t) is in L(- cox, co), q > 1, and the Hilbert transform '1'n(x) of w1(tl')q(t) 
exists. 

(iv) f(t) is in L,(- c, co), p > 1, and the Hilbert transform F(x) of f(t) exists. 
(v) p and q are such that I/p + 1/q < 1. 
Then the remainder in the quadrature rule defined by 



ON THE REMAINDER IN QUADRATURE RULES 821 

(2.3) Rjft] I | w(t)f(t) dt -7r E f (trIi) 

may be expressed as 

(2.4) Rn[f] = + " F(x) dx. 

Proof. We shall prove the theorem starting from (2.4). From condition (iii) and 
the definition of the Hilbert transformation (1.8), we may write (2.4) as 

ITw F(x) ft I' w(t>:n(t) (2.5) R.[f] = T - dx _-T t dt} 

Since sin(t) has n simple zeros at t = tr,n r = 1, 2,9*. , n, we may use partial fractions 
to obtain 

(2.6)'(,)(- 
(6t(t) r-l 9b(tr,n)(t tr,n) 

Substituting (2.6) into (2.5), we get 

(2.7) R,U] = 1 ? FX) dx (1 wi(t)(t) 'dt 
r_1 "(t",) - t7., coJ.. -x~ 

From condition (iv) and Lemma 1, F(x) belongs to LD; furthermore, w1(t)0n(t) is in L,, 
by condition (iii), p and q being related as in condition (v). Thus, we may apply 
Lemma 2 to the iterated integral in (2.7) to get 

(2.8) Rn[f] = X w f w1(t)4n(t) dt { ft ( F(x) d x)} 

The constant term vanishes as t. , are the zeros of 4n(t). Writing 

(x - trn)(t x) - t - tros (x tr. x tJ 

and making use of Lemma 1, we deduce that 

(2.9) 
1 J F(x) dx _ f(t)- f(t,.n) 
7r J_ O (x - t. ")(t - x) t t. 

The Eqs. (2.8) and (2.9) give, after some rearrangement, 

RnU] = f Wj(t)0k(t)A(t)[ q - dt 

i 0'(tr, n) c t - tf It 

which, upon using (2.2), (2.6) and the definition of 44(x), becomes 

Rn[f] = I w(t)f(t) dt -7r '1 -0 f(t ,n) 
and thetheorem er-1 d.(trn) 

and the theorem is proved. 
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The expression (2.4) bears a great resemblance to the contour integral form (1.6). 
In addition, the Hilbert transform 

(Px) = 
I 

f w1(t)ckf(t) dt w w(t)4s(t) dt 

is connected to the function 41'n(z), defined by (1.7), through the relation 

pn(x) = --[\1n(x + iO) + 16n(x - M0)], (a ? x ? b), 
(2.10) 2 

= On(4)9 (x < a, x > b). 
7r 

For x = t,, r = 1,2, **, n, we have 

(2.11) TR(tr n) = -- nor,n)* ir 

since the function 4An,(z) is uniquely defined at these points. Thus, the quadrature rules 
defined by (2.3) are identical to those given in the previous section. 

Theorem 1 applies in particular to Gaussian quadrature rules. The more familiar 
ones are those in which 0,,(t) is a classical orthogonal polynomial: 

Quadrature rule (a, b) 4R(t) w(t) 

Gauss-Jacobi (-1, 1) PIa $)(t) (I - tr( + t), (a,.B >-1) 

Gauss-Laguerre (0, co)) LIa)(t) tae` (a >-1) 

Gauss-Hermite (- co, co) HnQ(t) e-" 

The corresponding associated functions AnR(z) are given respectively by, see [8], 

(ap)(Z) = +a+,+r(n + a + 1)r(n + , + 1) 

(2.12) r(2n + a + , + 2)(z - 1) 

X 2F, n + 1, n + a + 1; 2n + a + , + 2; 1 ? 9) 

where 2F1(k, 1; m; z) denotes a hypergeometric function; 

(2.13) x,a)(z) = -r(n + a + 1)U(n + 1; 1 -a; e"z), 

where U(k; 1; z) denotes a confluent hypergeometric function, see [9, p. 5, Eq. (1.3.1)]; 

(2.14) ?1(z) = e ((+l)v)/7rl/2r(n + 1)U(I(n + 1); 1; eF z). 

where the upper (lower) sign corresponds to Im z > 0 (Im z < 0). The functions 4P"(x) 
may be deduced from the last three equations, making use of the relation (2.10). In 
the next section, we shall illustrate, by means of an example, the estimation of the 
remainder as given in Theorem 1. 

3. The Estimation of the Remainder. Consider, for example, the remainder in 
the Gauss-Jacobi quadrature rule applied to the function 
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(3.1) f(t) = 1/(t2 +k2) (k > 0). 

For the Gauss-Jacobi rule, the function (P,x) is defined by II*(, O)(x) say, 

IIn1 
0) (X) = -j- Il'(x + iO) + laII,, X - iO)], (-1 < X ? 1), 

(3.2) 
2r 

= -~IIn (X), (X < -,X > 1)P 7r 

where II(IO ?(x) is given by (2.12). 
From [10, p. 245, Eq. (10)], the Hilbert transform of f(t) is 

(3.3) F(x) = -x/k(x2 + k2). 

We also have that l/(t' + k2) C L4 for any p > 1, and that for a, 3 > -1, 
(1 - t)(l + t)' a(t) e L1+, i.e., it belongs to L4, where 1 : q 5 1 + e, e being 
a positive constant. From Theorem 1, (3.2), and (3.3) we may write 

R 1 1n1_' i''(x). x 
(3.4) RLt2 + = -k f n( x) t +2k dx. 

r 

FiGURE 1 
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To evaluate the integral in (3.4), let us consider the contour integrals 

+ 
n 

-~~~ k2 dz. {e + -l pnl,- (z) Z2 + k2 z 

The closed contour e+ (e) which is described in the anticlockwise (clockwise) di- 
rection in the upper (lower) half of the complex z-plane consists of (see Fig. 1) 

(i) a large semicircle C+ (C-) with centre at the origin and radius R, where 
R > 1 and R > k, in the upper (lower) half of the z-plane, 

(ii) a small circle y+ (,y) with centre at z = ik (z = - ik) and radius p, 
(iii) a pair of parallel lines joining C+ and ey+ (C- and -y), 
(iv) a line segment [-R + iO, R + iO] ([-R - , R - ]) indented at the zeros 

Z = tr ,f, r = 1, 2, , n, of P,(a. ')(z); the indentations are small semicircles 'y+ (ey,) 
with centre at z = -t,, and radius p7. in the upper (lower) half of the z-plane. 

It may be shown that 
(a) the integrals around C' and C- tend to zero in the limit as R -v c, 
(b) the contributions from the semicircles e+ and y-y, r = 1, 2, , n, cancel out, 
(c) the net contribution from the parallel lines vanishes. 
Furthermore, since the integrand is analytic on and within each of e+ and e-, we 

have 

(3.5) + (Z) k dz = 0. 

Thus, letting R -+ c, we obtain 

(3.6) f n(a.)(x) X 2 dx - 2 'f + f n, )(Z) 2 2 dZ. J-~,P(a~)(X A?+ k2 i J + Jy ,+ k2 

We further get, from the theory of residues, 

J r r lii (a, ) (Z) ,(a,II#)'_ ik) In' i) (3.7) + J ll( Z) -)z 2 2 dz iFl1$(ik) Pn ' (ik)J 
I~S~f+ 7~P,V ~zZ2 + kLP a.)(ik) P,a.(j) 

Finally, from (3.4), (3.6), and (3.7), we deduce that 

(3.) Rf 2 
i [II(a(ik) II ik) 

(3.8) Rn t2 + kj2 2k p(a.f)(ik) Pn(a,#)( ik)J 

Let us take for example a particular case in which k = 1 and a = = 0 (Gauss- 
Legendre quadrature rule). Then the remainder is given exactly by 

(3.9) R [t2 + ] Pn(i) 

where IIH(z) = II("0)(z) and P,(z) is the Legendre polynomial. Here we have made use 
of the relations P,(-z) = (-1)'P,(z) and IIn(-Z) = (-z1)"+HI(z). 

From the asymptotic formulae for HW "'(z) and P,( 
a (z), see [8], we find that, for 

large n, 
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(3.10) R12 I 2ir(-lI )nl 

Lt + J (1 + V/2)2n+' 

Table 1 shows that the estimated values of the remainder as given by (3.10) compare 
favourably with the actual values even for small values of n. 

TABLE 1. Values of Rn[l/(t2 + 1)] 

n Actual Value Estimated Value 

2 +0.070796 +0.076613 
3 -0.012537 -0.013144 
4 +0.002168 +0.002255 
5 -0.000375 -0.000387 
6 +0.000066 +0.000066 

4. Conclusion. In this paper we have derived an expression for the remainder in 
quadrature rules applied to the functions whose Hilbert transforms exist. The esti- 
mation of the remainder in one particular case has been achieved through examining 
the related contour integrals. Although only one example was given, the type of 
analysis which we have employed may in fact be applied to other functions satisfying 
Theorem 1. It goes without saying that the contours in the related contour integrals 
must be chosen according to the form of the Hilbert transform of the function under 
consideration. 
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